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Abstract A reaction–diffusion model for the spatial spread of West Nile virus is
developed and analysed. Infection dynamics are based on a modified version of a
model for cross infection between birds and mosquitoes (Wonham et al., 2004, An
epidemiological model for West-Nile virus: Invasion analysis and control applica-
tion. Proc. R. Soc. Lond. B 271), and diffusion terms describe movement of birds
and mosquitoes. Working with a simplified version of the model, the cooperative
nature of cross-infection dynamics is utilized to prove the existence of traveling
waves and to calculate the spatial spread rate of infection. Comparison theorem
results are used to show that the spread rate of the simplified model may provide
an upper bound for the spread rate of a more realistic and complex version of the
model.

Keywords West Nile virus model · Traveling waves · Spread rate · Comparison
theorems

1. Introduction

West Nile (WN) virus is an infectious disease spreading through interacting bird
and mosquito populations. Although WN virus is endemic in Africa, the Middle
East and western Asia, the first recorded North American epidemic was detected
in New York state as recently as 1999. In the subsequent 5 years the epidemic has
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spread spatially across to most of the west coast of North America. It is likely that
the spread of WN virus comes from the interplay of disease dynamics and bird and
mosquito movement.

Here we mathematically investigate the spread of WN virus by spatially extend-
ing the non-spatial dynamical model of Wonham et al. (2004) to include diffusive
movement of birds and mosquitoes. Diffusive movement provides the simplest
possible movement model for birds and mosquitoes. It is likely that both bird and
mosquito movements actually involve a mixture of local interactions, long-distance
dispersal and, in the case of birds, migratory flights. Despite these complicating fac-
tors, diffusion models for birds have proved useful in the analysis of related prob-
lems, such as avian range expansion (Okubo, 1998). Our approach is to focus on
the implications of diffusive motion coupled to a dynamical model for WN virus.

1.1. Wonham et al. Model

In Wonham et al. (2004), a non-spatial susceptible-infectious-removed (SIR)
model for the emerging West Nile virus in North America is formulated and dis-
cussed. The model, which is for one season, includes cross-infection between fe-
male mosquitoes (vectors) and birds (reservoirs) that is modeled by mass action
incidence normalized by the total population of birds. This arises since female
mosquitoes only take a fixed number of blood meals per unit time, and follows
a similar term used to model malaria. The female mosquito classes are larval,
susceptible, exposed and infectious (infective) adult with the numbers in each
class denoted by LV , SV , EV and IV , respectively, and with total population NV =
LV + SV + EV + IV . Bird classes are susceptible, infectious, removed and dead
with the numbers in each class denoted by SR, IR, RR, XR, respectively, and with to-
tal live population NR = SR + IR + RR. Here we generalize the model of Wonham
et al. (2004) by assuming that removed birds may return to the susceptible class
(i.e., WN virus confers temporary immunity on birds). As in Wonham et al. (2004),
human and other dead-end hosts (for example, horses) are ignored.

The time rate of change for mosquitoes (V) and birds (R) is modeled by the
following ODE dynamical system.

dLV

dt
= bV(SV + EV + IV) − mV LV − dLLV

dSV

dt
= −αVβR

IR

NR
SV + mV LV − dV SV

dEV

dt
= αVβR

IR

NR
SV − (κV + dV)EV

dIV

dt
= κV EV − dV IV (1)

dSR

dt
= −αRβR

SR

NR
IV + ηRRR

dIR

dt
= αRβR

SR

NR
IV − (δR + γR)IR
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dRR

dt
= γRIR − ηRRR

dXR

dt
= δRIR

The parameters in the above system are defined as follows.

� bV : mosquito birth rate;
� dL, dV : larval, adult mosquito death rate;
� δR: bird death rate, caused by virus;
� αV, αR: WN transmission probability per bite to mosquitoes, birds;
� βR: biting rate of mosquitoes on birds;
� mV : mosquito maturation rate;
� κV : virus incubation rate in mosquitoes;
� γR: bird recovery rate from WN;
� ηR: bird loss of immunity rate (0 in Wonham et al. (2004)).

With non-negative initial conditions, variables in (1) remain non-negative. The
parameter constraint bV = dV(mV + dL)/mV is assumed so as to guarantee the ex-
istence of a disease-free equilibrium (see assumption (B1) in Section 2).

1.2. Spread rate and traveling waves

Here we consider spatial extensions of the equations (1). The general form for the
model will be

ut = Duxx + f(u), (2)

where u denotes the numbers in classes of mosquitoes and birds, f(u) describes the
infection dynamics, and D is a non-negative diagonal diffusion matrix. The dynam-
ics are assumed to have a disease-free (i.e., all infected components equal to zero)
equilibrium u0 satisfying f(u0) = 0, and a disease-endemic equilibrium u∗ > 0 sat-
isfying f(u∗) = 0. Note that u∗ �= u0. We also consider a simplified version of prob-
lem (2) in which u = (IV, IR)T represents the numbers in the infectious classes of
mosquitoes and birds. A trivial (disease-free) equilibrium for the simplified model
is 0 since f(0) = 0. Details on the simplification of system (1) to the two-component
model are given in Sections 2 and 3.

Our focus is on spatial spread of the infection. Two alternative approaches for in-
vestigating spatial spread of the infection are through analysing traveling wave so-
lutions and calculating spread rates. We now give some relevant definitions, which
we use in Sections 4–6.

One approach for analyzing the spread of infection involves traveling waves.
Here equation (2) is rewritten in terms of a coordinate frame moving with speed
c to the right, thus u(x, t) = U(z), with z = x − ct , and U̇ denotes the derivative
with respect to z. Equation (2) becomes

cU̇ + DÜ + f(U) = 0. (3)
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Boundary conditions that join up the disease-free and disease-endemic equilibria
are assumed, namely

lim
z→−∞ U(z) = u∗, lim

z→∞ U(z) = u0. (4)

An alternative approach is by calculating spread rates: the next two definitions
come from Weinberger et al. (2002); see also Hadeler and Lewis (2002).

Definition 1.1. The spread rate for the non-linear system (2) with initial condi-
tions not equal to u0 on a compact set, is a number c∗

G such that for u0 �= u∗ and
small ε > 0

lim
t→∞

{
sup

|x|≥(c∗
G+ε)t

‖u(x, t) − u0‖
}

= 0, lim
t→∞

{
sup

|x|≤(c∗
G−ε)t

‖u(x, t) − u∗‖
}

= 0.

For the simplified two-component model with u0 = 0, it is useful to also define
the spread rate for the corresponding linear system.

Definition 1.2. The spread rate c̄ for the simplified linear system corresponding
to (2)

ut = Duxx + Au,

where f(0) = 0 and A = Df(0) is the Jacobian matrix, is defined as a number satis-
fying

lim
t→∞

{
sup

|x|≥(c̄+ε)t
‖u(x, t)‖

}
= 0, lim

t→∞

{
sup

|x|≤(c̄−ε)t
‖u(x, t)‖

}
> 0.

When the spread rates for the non-linear and linear systems are identical, then
the spread rate for the non-linear system is said to be linearly determinate. Cer-
tain classes of models with cooperative dynamics have linearly determinate spread
rates, but this is not the case for all non-linear systems. Linear determinacy for
discrete time recursion systems is discussed by Lui (1989a,b).

Here we use the methods of Li et al. (2005) to show existence of a class
of traveling wave solutions for the simplified system and use the methods of
Weinberger et al. (2002) to relate the speed c to the spread rates for the non-linear
and linear systems.

2. Spatially-independent model

We start by proposing modifications of equations (1) that allow us to simplify the
ODE system and so analyze the dynamics.
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2.1. ODE model simplification

We begin analysis by simplifying system (1) and reducing the number of variables.
To do this we make assumptions about the model structure ((A1)–(A6)) and oth-
ers about the model parameters ((B1)–(B2)), which we now list together with the
sequential simplifications.

(A1) There is no bird death due to WN virus: δR = 0.
Since we include all WN virus susceptible birds, this approximation is rea-
sonable, as only a small number of species (for example, corvid species such
as crows) have a high WN virus related death rate. Many other species
such as Rock Dove (pigeons) carry WN virus with low mortality rates
Komar et al. (2003). Then from (1) it follows that

dNR

dt
= 0

so NR(t) = NR is a constant for all t ≥ 0.

(A2) Removed birds become immediately susceptible: ηR → ∞.

This assumes that there is no temporary immunity arising from WN virus.
While simplifying our model, the assumption of immediate return to the
susceptible class tends to overestimate the rate of disease progression. This
statement is justified in Section 6, in which this assumption is relaxed and
comparison theorems are applied.
The equation for RR(t) can be solved in terms of IR(t). Assuming that
RR(0) = 0, the result is

RR(t) = e−ηRt
∫ t

0
γRIR(τ )eηRτ dτ ≤ γR

ηR
NR (5)

Thus, RR(t) → 0 as ηR → ∞. Therefore, NR = SR(t) + IR(t), and we need
consider only the equation for infectious birds, which takes the form

dIR

dt
= αRβR

NR − IR

NR
IV − γRIR (6)

(A3) Exposed mosquitoes are immediately infective: κV → ∞.
Biological data indicate that the exposed (but not yet infective) class can last
approximately 9 days in mosquitoes. The assumption of immediate infectiv-
ity, as for (A2) above, tends to overestimate the rate of disease progression.
This statement is also justified in Section 6, in which this assumption is re-
laxed and comparison theorems are applied.

Using integration as above, EV(t) ≤ αVβR

κV + dV
NV implying that EV(t) = 0 in

the limit as κV → ∞. The equations for mosquitoes become

dLV

dt
= bV(SV + IV) − mV LV − dLLV
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dSV

dt
= −αVβR

IR

NR
SV + mV LV − dV SV (7)

dIV

dt
= αVβR

IR

NR
SV − dV IV

(B1) Non-trivial disease-free equilibria exist: bV = dV(mV + dL)
mV

.

For the existence of a disease-free equilibrium it is assumed that vector birth
and death rates balance in the absence of disease. This is expressed by the
above parameter constraint (identical to the one made in Wonham et al.
(2004)), and ensures that, in the absence of disease, the larval and adult
mosquito populations remain constant at values determined by their ini-
tial values. Denoting the population of adult mosquitoes in (7) by AV , i.e.,
AV = SV + IV , we now study the two-dimensional linear system for AV and
LV :

dAV

dt
= −dV AV + mV LV

dLV

dt
= bV AV − (mV + dL)LV (8)

We can analyze the phase plane portrait in LV, AV variables. By assumption
(B1), system (8) has infinitely many degenerate stationary points satisfying

LV = dV

mV
AV. Trajectories are straight lines of the form

AV(t) = − mV

mV + dL
LV(t) + AV(0) + mV

mV + dL
LV(0)

and solutions tend to stationary points (Fig. 1). Using the trajectories in (8),
the equation for AV can be written as

d2 AV

dt2
+ (mV + dV + dL)

dAV

dt
= 0

which has solution

AV(t) = AV(0) − B(1 − e−(mV+dV+dL)t )

with B = dV AV(0) − mV LV(0)
mV + dV + dL

(9)

from the first equation in (8). Then

LV(t) = LV(0) + mV + dL

mV
B(1 − e−(mV+dV+dL)t )
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Fig. 1 Stationary solutions and trajectories for LV, AV system.

In particular,

min(AV(0), AV(0) − B) < AV(t) < max(AV(0), AV(0) − B), (10)

and similar estimates hold for LV(t). Using the above in (7), the equations
for mosquitoes can be reduced to one non-autonomous equation:

dIV

dt
= αVβR

IR

NR

(
AV(0) − B(1 − e−(mV+dV+dL)t ) − IV

)
− dV IV

Note, that as t → ∞, AV(t) → AV = AV(0) − B, a constant, motivating our
next assumption.

(A4) AV(t) and LV(t) are constant and equal to stationary solutions of the system
(8).
Under this assumption

dIV

dt
= αVβR

IR

NR
(AV − IV) − dV IV (11)

From (11) together with the infectious bird equation (6), we obtain the sim-
plified system

dIV

dt
= αVβR

IR

NR
(AV − IV) − dV IV

dIR

dt
= αRβR

NR − IR

NR
IV − γRIR (12)
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where NR, AV are constants denoting the total population of birds and adult
mosquitoes, respectively.

2.2. Analysis in IV, IR phase plane

The system (12) can be written in the form[
IV

IR

]
t
= f

([
IV

IR

])
(13)

with f = ( f1, f2)T given as

f1(IV, IR) = αVβR
IR

NR
(AV − IV) − dV IV

f2(IV, IR) = αRβR
NR − IR

NR
IV − γRIR

The Jacobian matrix at the trivial stationary solution (IV, IR) = (0, 0) is given
by

J = Df(0) =
 −dV αVβR

AV

NR
αRβR −γR

 (14)

Denoting the eigenvalues of J by λ1 and λ2, it follows that

λ1 + λ2 = trJ = −(dV + γR) < 0

λ1λ2 = detJ = dVγR − αVαRβ2
R

AV

NR
= dVγR(1 − R2

0)

where R0 =
√

αVαRβ2
R AV

dVγRNR
is the basic reproduction number for the WN

virus model (13) (see van den Driessche and Watmough (2002) for
a definition and detailed calculations needed for R0). Thus the sta-
bility of the zero solution is determined by the sign of detJ , it
is linearly stable (a node) for detJ > 0, i.e., R0 < 1, and unsta-
ble (a saddle point) for detJ < 0, i.e., R0 > 1. In the latter case,
there exists a positive eigenvalue with positive components of the
corresponding eigenvector. This motivates our second assumption on the
parameters.

(B2) dVγR < αVαRβ2
R

AV

NR
giving detJ < 0 and R0 > 1.

We also consider the positive stationary solution (I∗
V, I∗

R) given by the
system f

[
(I∗

V, I∗
R)T

] = 0. From the first and second equations of this system,
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respectively:

I∗
R = dV

αVβR

I∗
V NR

AV − I∗
V

, I∗
V = γR

αRβR

I∗
RNR

NR − I∗
R

Solving for non-trivial values gives

I∗
V = αVαRβ2

R AV − dVγRNR

αRβR(dV + αVβR)
, I∗

R = αVαRβ2
R AV − dVγRNR

αVβR(γR + αRβR
AV
NR

)
(15)

For a biologically reasonable (i.e., positive) solution, the constraint

αVαRβ2
R AV − dVγRNR > 0 ⇔ detJ < 0 ⇔ R0 > 1

is needed. Thus the assumption (B2) is necessary for the existence of
a non-trivial stationary solution. Notice that the disease-free stationary
point (0, 0) and the disease-endemic stationary point (I∗

V, I∗
R) are the only

stationary solutions of system (13).
We now study linear stability of the positive solution given by (15). For

R0 > 1, the Jacobian

J ∗ = Df
[
(I∗

V, I∗
R)T] =

 −dV − αVβR

NR
I∗

R
αVβR

NR
(AV − I∗

V)

αRβR

NR
(NR − I∗

R) −γR − αRβR

NR
I∗

V


Consequently, on using (15)

det(J ∗) = dVγR − αVαRβ2
R

AV

NR
+ αRβR

I∗
V

NR
(dV + αVβR)

+αVβR
I∗

R

NR

(
γR + αRβR

AV

NR

)
= detJ − 2 detJ = − detJ > 0

tr(J ∗) = −dV − γR + detJ
[

1
dV + αVβR

+ 1

γR + αRβR
AV
NR

]
< 0

showing that the positive stationary solution of (13) is a stable node.

Proposition 2.1 Global stability of the endemic equilibrium. If R0 > 1 and
IV(0) + IR(0) > 0, then the endemic equilibrium (I∗

V, I∗
R) of (12) is globally asymp-

totically stable in the positive quadrant.
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Fig. 2 Phase portrait for IV, IR.

Proof. From (13)

∇ · f = ∂ f1

∂ IV
+ ∂ f2

∂ IR
= −dV − γR − αVβR

IR

NR
− αRβR

IV

NR
< 0

Thus, periodic solutions are excluded by Bendixson’s Criterion. Application of the
Poincaré–Bendixson theorem completes the proof that the endemic equilibrium is
globally asymptotically stable.

The method of contracting rectangles (Smoller, 1983), can also be used to show
that the endemic equilibrium is globally stable, as illustrated in Fig. 2.

3. Spatially-dependent model

To include the possible impact of spatial movement of reservoirs (birds) and,
on a much smaller scale, vectors (mosquitoes), diffusion terms are included, giv-
ing the following spatially-dependent model in which the variables are function
of space x, with −∞ < x < ∞, and time t , and non-negative initial values are
assumed.

∂LV

∂t
= bV(SV + EV + IV) − mV LV − dLLV

∂SV

∂t
= −αVβR

IR

NR
SV + mV LV − dV SV + ε

∂2SV

∂x2

∂ EV

∂t
= αVβR

IR

NR
SV − (κV + dV)EV + ε

∂2 EV

∂x2

∂ IV

∂t
= κV EV − dV IV + ε

∂2 IV

∂x2
(16)
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∂SR

∂t
= −αRβR

SR

NR
IV + ηRRR + D

∂2SR

∂x2

∂ IR

∂t
= αRβR

SR

NR
IV − (δR + γR)IR + D

∂2 IR

∂x2

∂ RR

∂t
= γRIR − ηRRR + D

∂2 RR

∂x2

∂ XR

∂t
= δRIR

Here the diffusion coefficient for birds is D > 0 and the diffusion coefficient for
mosquitoes is ε > 0 with ε � D, since they do not move as quickly as birds. (In
Section 5, the limiting case ε = 0 is studied.) It is assumed that birds (mosquitoes)
in each class have the same diffusion coefficient, except that larval mosquitoes do
not diffuse.

3.1. Model simplification

We put some assumptions on initial conditions for this system. The conditions be-
low, together with the structural assumptions (A1)–(A4), lead to the simplified
spatially-dependent model.

(A5) NR (x, t) is initially constant in space.
This assumption is NR (x, 0) = NR, a constant. By (A1),

∂ NR

∂t
= D

∂2 NR

∂x2

Then NR(x, t) = NR for all t ≥ 0.
As with our analysis of the ODE system (1), assumption (A2) can be used

to show that RR approaches zero in the limit ηR → ∞. This is facilitated by
Fourier transforming (in space) the recovered birds equation and proceeding
as for (5). Thus, we can replace the bird equations in the system (16) with the
single equation for infectious birds

∂ IR

∂t
= αRβR

NR − IR

NR
IV − γRIR + D

∂2 IR

∂x2
(17)

Consider NV(x, t) = LV(x, t) + SV(x, t) + EV(x, t) + IV(x, t), then

∂ NV

∂t
= (bV − dV)(SV + EV + IV) − dLLV + ε

∂2

∂x2
(SV + EV + IV)

Thus, it is hard to predict the total number of mosquitoes at a given time.
Nevertheless, we can set AV(x, t) = SV(x, t) + EV(x, t) + IV(x, t) and study
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the system of two equations for AV and LV :

∂ AV

∂t
= −dV AV + mV LV + ε

∂2 AV

∂x2

∂LV

∂t
= bV AV − (mV + dL)LV (18)

(A6) The adult and larval mosquito densities AV(x, t), LV(x, t) are initially
constant in space.
With this assumption, the system (18) implies that AV(x, t) and LV(x, t) re-
main constant in space for all time. This can be seen rigorously by analysing
the Fourier-transformed version of (18), by solving the initial value problem
for each wave number and by showing that non-zero wave numbers cannot
grow. Similarly, we use (A3) and, arguing as in the spatially-independent
case, assuming (A4) and (B1), the mosquito equations in (16) simplify to

∂ IV

∂t
= αVβR

IR

NR
(AV − IV) − dV IV + ε

∂2 IV

∂x2
(19)

The simplified spatial model now reads

∂ IV

∂t
= αVβR

IR

NR
(AV − IV) − dV IV + ε

∂2 IV

∂x2

∂ IR

∂t
= αRβR

NR − IR

NR
IV − γRIR + D

∂2 IR

∂x2
(20)

where AV, NR are constant and IV(x, 0) + IR(x, 0) > 0.

With the assumption (B2) there is a positive stationary solution of (20), namely
(I∗

V, I∗
R) given by (15). From Fig. 2, it can be seen that there exits a family

of contracting rectangles in the positive (IV, IR) quadrant, containing (I∗
V, I∗

R)
(see Fig. 2). Denote such a rectangle by G. By using Theorem 14.19 in Smoller
(1983) taking w = (IV, IR), a norm |w|G = inf{a ≥ 0 : w ∈ aG} and the Lyapunov
functional

LG(w) = sup{|w(x)|G : x ∈ R},

it follows that (I∗
V, I∗

R) is a global attractor in the positive quadrant for the spatially-
dependent system (20).

The system (20) can be written as[
IV

IR

]
t
= D

[
IV

IR

]
xx

+ f
([

IV

IR

])
(21)
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with f = ( f1, f2)T given as before in Section 2.2 and

D =
[

ε 0
0 D

]
System (12) is the spatially-independent version of the simplified system (20) and
the results of the phase plane analysis in Section 2.2 hold.

4. Traveling wave solutions

We start by defining traveling waves for the system (20).

Definition 4.1. A traveling wave solution with speed c for (20) is a solution that
has the form (IV(x − ct), IR(x − ct)) and connects the disease-free and disease-
endemic stationary points of the system so that

lim
(x−ct)→−∞

(IV, IR) = (I∗
V, I∗

R) and lim
(x−ct)→∞

(IV, IR) = (0, 0).

The traveling front solution with speed c satisfies the ODE system

−cİV = ε ÏV + αVβR
IR

NR
(AV − IV) − dV IV

−cİ R = DÏ R + αRβR
NR − IR

NR
IV − γRIR

with boundary conditions at ±∞ determined by stationary solutions of the system
as above.

We use the theorem on existence of traveling waves proved in Li et al. (2005).
To this end, we examine and list the properties of the non-linear system (20), as
written in (21), that are necessary to apply the result.

1. f has two stationary solutions: the zero solution (0, 0) and the positive solution
(I∗

V, I∗
R).

2. f is cooperative, i.e., f1, f2 are non-decreasing in off-diagonal components.
3. f does not depend explicitly on either x or t .
4. f is continuous, has uniformly bounded continuous first partial derivatives for

0 ≤ (IV, IR) ≤ (I∗
V, I∗

R) and is differentiable at zero. The Jacobian matrix J =
Df(0), given by (14) has non-negative off-diagonal entries and has a positive
eigenvalue whose eigenvector has positive components.

5. Matrix D is diagonal with constant strictly positive diagonal entries.

With the properties (1)–(5) we can use the result of Li et al. (2005) Theorem 4.2
(see also Volpert et al., 1994, Theorem 4.2) to claim the following traveling wave
result.

Theorem 4.1. There exists a minimal speed of traveling fronts c0 such that for ev-
ery c ≥ c0 the non-linear system (20) has a non-increasing traveling wave solution
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(IV(x − ct), IR(x − ct)) with speed c so that

lim
(x−ct)→−∞

(IV, IR) = (I∗
V, I∗

R) and lim
(x−ct)→∞

(IV, IR) = (0, 0).

If c < c0, there is no traveling wave of this form.

The alternative approach to spatial disease spread involves calculation of the
spread rate of system (20), as given by Definition (1). With assumptions (1)–(5),
results in Li et al. (2005) can be used to describe the spread rate in terms of the
traveling wave minimal speed.

Theorem 4.2. The minimal wave speed c0 for the non-linear system (20) is equal
to c∗, the spread rate for this system.

5. Spread-rate analysis

We now consider how to calculate the spread rate c∗ for the non-linear system
(20); see Definition 1.1. Cases in which the spread rate is linearly determinate are
outlined in Section 4 of Weinberger et al. (2002). To apply these results, Hypothe-
ses 4.1 of Weinberger et al. (2002) must be satisfied. The properties (1)–(4) above
are equivalent to the Hypotheses 4.1.i–4.1.iv of Weinberger et al. (2002), and the
Jacobian J , given by (14), is irreducible and so satisfies Hypothesis 4.1.v of
Weinberger et al. (2002).

Theorem 4.2 of Weinberger et al. (2002) states that under the above hypotheses
if a subtangential condition

f
(

ρ

[
IV

IR

])
≤ ρDf(0)

[
IV

IR

]
= ρJ

[
IV

IR

]
(22)

for all positive ρ is satisfied, then the spread rate for the non-linear system c∗ is
linearly determinate. In other words c∗ = c̄ where c̄ is the spread rate for the lin-
earisation of (20), namely[

IV

IR

]
t
= D

[
IV

IR

]
xx

+ J
[

IV

IR

]
(23)

(see Definition 1.2.) The subtangential condition is satisfied naturally by function
f in (13). Moreover, using Lemma 4.1 in Weinberger et al. (2002) gives a formula
for c̄.

Theorem 5.1.

(i) The spread rate c∗ of the non-linear system (20) and the spread rate c̄ of the
linearized system (23) both exist and c∗ = c̄.

(ii) The spread rate c̄ of (23) is given by

c̄ = inf
λ>0

σ1(λ)
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where σ1(λ) is the largest eigenvalue, i.e., the spectral bound, of the matrix

Bλ = J + λ2D
λ

Note that Theorem 5.1 does not rely upon the positivity of the diagonal elements of
D (i.e. property (5) above) and hence remains true in the limiting case ε = 0.

By the above theorem, the single speed can be found from the linear analysis,
which is more convenient than using the definition of spread rate for the non-linear
system. From the formula in Theorem 5.1, for system (23)

Bλ =

−dV

λ
+ ελ

αVβR

λ

AV

NR
αRβR

λ
−γR

λ
+ Dλ

 .

Denoting

trJ = −(dV + γR) ≡ θ < 0

detJ = dVγR − αVαRβ2
R

AV

NR
≡ j < 0

the characteristic polynomial of Bλ is

p(σ ; λ, ε) = σ 2 − σ
θ+(D+ε)λ2

λ
+ j

λ2 − DdV − εγR + εDλ2 = 0 (24)

Thus, the following statement holds.

Lemma 5.1. For any finite λ, the roots σi (λ, ε), i = 1, 2 of the characteristic poly-
nomial p(σ ; λ, ε) of the matrix Bλ depend continuously on ε at zero, i.e.,

lim
ε→0

σi (λ, ε) = σi (λ, 0)

In the general case ε > 0, it is difficult to obtain a result for the minimal spread
rate by examining roots of p(σ ; λ, ε) as the larger root σ1(λ, ε) can have more than
one extremum. Consequently we study the limiting case ε = 0 for which a more
precise characterization is possible.

For ε = 0, we can apply the results of Hadeler and Lewis (2002), Section 6 (Lem-
mas 5, 6, 7 and Theorem 8), since the polynomial p(σ ; λ, 0) has the structure re-
quired there. This leads to the following result for c̄.

Theorem 5.2. Let detJ ≡ j < 0 and ε = 0. Consider

P(σ ; λ) = λ2 p(σ ; λ, 0) = −Dσλ3 + (σ 2 − DdV)λ2 − θσλ + j
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The spread rate c̄ of the linear system (23) can be obtained as the largest value σ

such that the polynomial P(σ ; λ) has a real-positive double root.

To study the double root condition P(c; λ) = ∂ P/∂λ = 0 necessary for c̄, we can
use the resultant of the polynomial P and its derivative, which is cubic in c2. This
resultant is

Q(c2) = c6(c4 D(−4θ3 + 12dV j − 2dVθ2 + 18θ j)

+c2 D2(−18θdV j − 12d2
V j + d2

Vθ2 − 27 j2) + 4D3d3
V j (25)

With x = c2, from Hadeler and Lewis (2002) Lemma 9, it follows that the polyno-
mial Q(x) is convex (concave up) for x > 0.

Thus the cubic Q(x) has one positive root.
Using Theorems 4.1, 4.2, 5.1 and 5.2 and Lemma 5.1, we can infer the following

result.

Theorem 5.3. Assume that the conditions detJ < 0 and ε > 0 hold. Then the
spread rate c∗ of the non-linear system (20) is the lower bound c0 for the speed
of a class of traveling waves solutions (c∗ = c0), and the spread rate is linearly de-
terminate, (c∗ = c̄). As ε → 0, the spread rate for the non-linear system approaches
the positive square root of the largest zero of the cubic Q(x).

6. Comparison results

We now consider the system (16) assuming only (A1), (A5), (A6) and (B1), which
we recall now for convenience of the reader.

(A1) δR = 0
(A5) NR(x, 0) = ÑR, constant
(A6) AV(x, 0) and LV(x, 0) are constant

(B1) bV = dV(mV + dL)
mV

We prove the following result by using the comparison theorem for parabolic sys-
tems that can be found, for example, in Lu and Sleeman (1993).

Theorem 6.1. Assume that (A1), (A5), (A6) and (B1) hold. Let

max
(

AV(x, 0), AV(x, 0) − dV AV(x, 0) − mV LV(x, 0)
mV + dV + dL

)
≤ ÃV

where AV = ÃV and NR = ÑR in the simplified system (20), and

(EV(0) + IV(0), IR(0)) ≤ ( ĪV(0), ĪR(0))

where ( ĪV, ĪR) are the solutions of (20). Then the solution components (IV, IR) for
the system (16) are bounded above by the solution ( ĪV, ĪR) of the simplified system
(20).
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Proof. The essential assumption of the comparison result that we want to apply is
a uniform parabolicity of operators in all equations. We note that some operators
in (16) do not have this property so we need to modify the system.

The simplified system (20) reads, in variables ( ĪV, ĪR) :

∂ ĪV

∂t
− ε

∂2 ĪV

∂x2
= αVβR

ĪR

ÑR

(
ÃV − ĪV

) − dV ĪV

∂ ĪR

∂t
− D

∂2 ĪR

∂x2
= αRβR

ÑR − ĪR

ÑR
ĪV − γRĪR (26)

where ÑR, ÃV are constant.
From the system (16),

∂(EV + IV)
∂t

− ε
∂2(EV + IV)

∂x2
(27)

= αVβR
IR

NR
(AV − (EV + IV)) − dV(EV + IV).

By assumption AV(x, t) is initially constant in space, thus it remains constant for
all times (that can be seen from the analysis of the system in (AV, LV), as observed
in Section 3). Consequently, by (10)

AV(x, t) = AV(t) ≤ max
(

AV(x, 0), AV(x, 0) − dV AV(x, 0) − mV LV(x, 0)
mV + dV + dL

)
≤ ÃV

Next, since NR(x, t) = SR(x, t) + IR(x, t) + RR(x, t) is initially constant, equal to
ÑR, and satisfies the heat equation, as δR = 0, then NR(x, t) = ÑR. Thus, from (16)
the equation for IR can be written as

∂ IR

∂t
− D

∂2 IR

∂x2
= −γRIR + αRβR

ÑR − IR − RR

ÑR
IV

≤ −γRIR + αRβR
ÑR − IR − RR

ÑR
(EV + IV) (28)

Variables (EV + IV, IR) satisfy the system (27)–(28) for which the right hand side
functions are bounded above by the right-hand side functions of the system (26),
since

AV(x, t) ≤ ÃV

and, since RR(x, t) ≥ 0,

ÑR − IR − RR

ÑR
≤ ÑR − IR

ÑR
.
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Then, using the comparison result for parabolic systems, as stated, for example, in
Lu and Sleeman (1993), Theorem 2.9, it follows that ( ĪV, ĪR) are supersolutions to
(EV + IV, IR) and thus to (IV, IR) if this relation holds initially.

Our final result bounds the spread rate of the original system by the correspond-
ing values for the simplified system. For this, the following extension of (B2) is
needed for existence of the disease-endemic equilibrium for the system (16) with
finite κV .

(B2′) dVγR

(
1 + dV

κV

)
< αVαRβ2

R
ÃV

ÑR

The system (16) has, in infected variables (EV + IV, IR), the disease-free equi-
librium (0, 0) and the disease-endemic equilibrium

u∗=
αVαRβ2

R ÃV −
(

dV + d2
V

κV

)
γRÑR

αRβR

[
dV

(
1 + γR

ηR

)
+ αVβR

] ,
αVαRβ2

R ÃV −
(

dV + d2
V

κV

)
γRÑR

αVβR

[
γR

(
1 + dV

κV

)
+ αRβR

ÃV

ÑR

(
1 + γR

ηR

)]

(29)

which is positive by (B2′). Note that the condition (B2′) is an extension of (B2) for
finite κV. It is also equivalent to√

αVαRβ2
R ÃVκV

dVγRÑR(κV + dV)
> 1

where the left-hand side is the basic reproduction number for the ODE WN virus
model with the exposed class EV included. This reduces to R0 > 1 when κV → ∞,
as in Section 2.2.

Theorem 6.2. Let the assumptions of Theorem 6.1 and (B2′) be satisfied. If the
spread rate for the system (16) exists and is equal to c∗

G then c∗
G ≤ c∗, where c∗ is the

spread rate for the simplified system (20).

Proof. From the above considerations, the infected classes for the system (16)
satisfy the system (27)–(28). Therefore, using Definition 1.1 for the spread rate
of (16)

lim
t→∞

{
sup

|x|≥(c∗
G+ε)t

‖u(t, x)‖
}

= 0, lim
t→∞

{
sup

|x|≤(c∗
G−ε)t

‖u(t, x) − u∗‖
}

= 0,

with u = (EV + IV, IR), u0 = 0 and the disease-endemic equilibrium u∗ as in (29).
Similarly, for the spread rate of (20)

lim
t→∞

{
sup

|x|≥(c∗+ε)t
‖ū(t, x)‖

}
= 0, lim

t→∞

{
sup

|x|≤(c∗−ε)t
‖ū(t, x) − ū∗‖

}
= 0,
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where ū = ( ĪV, ĪR) and ū∗ is given by (15). Assume that c∗ < c∗
G, then

taking ε = c∗
G−c∗

2 > 0 and using the above with c∗
G − ε = c∗ + ε = c∗

G+c∗

2 = c
gives

lim
t→∞

{
sup
|x|≤ct

‖u(t, x) − u∗‖
}

= 0 and lim
t→∞

{
sup
|x|≥ct

‖ū(t, x)‖
}

= 0.

Thus

lim
t→∞

{
sup
|x|=ct

||u(t, x) − u∗||
}

≤ lim
t→∞

{
sup
|x|≤ct

||u(t, x) − u∗||
}

= 0,

lim
t→∞

{
sup
|x|=ct

||ū(t, x)||
}

≤ lim
t→∞

{
sup
|x|≥ct

||ū(t, x)||
}

= 0.

Since by the comparison result (Theorem 6.1) it follows that

u(x, t) =
[

EV + IV

IR

]
(x, t) ≤

[
ĪV

ĪR

]
(x, t) = ū(x, t)

we conclude the following

lim
t→∞

{
sup
|x|=ct

||u(t, x) − u∗||
}

= 0,

lim
t→∞

{
sup
|x|=ct

||u(t, x)||
}

≤ lim
t→∞

{
sup
|x|=ct

||ū(t, x)||
}

= 0.

This implies u∗ = 0, which contradicts the assumption u∗ �= 0 in Definition 1.1.
Therefore, c∗

G ≤ c∗.

Combining the above results with those of Theorem 5.3 for system (20), gives
c∗

G ≤ c∗ = c̄ = c0, if the spread rate c∗
G for the system (16) exists.

7. Discussion

Figure 3 shows a plot of the numerical estimate for the spread rate c̄ = c∗ km/day
of the simplified system (20) with ε = 0, calculated as the positive square root of
the largest zero of the cubic Q, given by (25), versus the bird diffusion coefficient
D. We consider the range of D between 0 and 14 km2/day, as estimated in Okubo
(1998). For illustrative purposes, we set the ratio AV/NR = 20, βR = 0.3 and γR =
0.01/day. For other parameters, we use mean values as estimated in Wonham et al.
(2004), namely, dV = 0.029, αV = 0.16, αR = 0.88/day.

As noted in the Introduction section, West Nile virus has spread across North
America in about 5 years, thus the observed spread rate is about 1000 km/year,
i.e., 2.74 km/day. From Fig. 3, to achieve this observed value for c∗, a diffusion
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Fig. 3 Spread rate c∗ ([ km
day ]) as the function of bird diffusion D([ km2

day ]).

coefficient of about 5.94 is needed in our model. The spread rate c∗ is an increasing
function of D and also increases slowly with the ratio AV/NR.

The reaction-diffusion system (16) that we have discussed is a first approxima-
tion for the spatial spread of West Nile virus. To incorporate more biology, a model
should contain more realistic bird and mosquito movements. For a model with
seasonality, these include bird migration and regular changes in the number of
mosquitoes. Different species of birds with different characteristics need to be in-
cluded, especially if control strategies are incorporated in the model. In addition,
spatial models other than those using reaction-diffusion equations remain to be
explored.

We have analyzed a simplified version of system (16), namely system (20), and
proved that the spread rate, which is linearly determinate, is equal to the minimal
wave speed for this non-linear system. By comparison results, it then follows that
this spread rate is an upper bound for the spread rate of the original system (16),
provided that the spread rate for (16) exists. Conditions for this existence remain
to be determined.
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